Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Cell ; 82(23): 4519-4536.e7, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2120478

ABSTRACT

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Subject(s)
AMP-Activated Protein Kinases , Nucleic Acids , Animals , AMP-Activated Protein Kinases/genetics , Immunity, Innate , Antiviral Agents , Glucose
2.
Critical Care Medicine ; 50:153-153, 2022.
Article in English | Academic Search Complete | ID: covidwho-1596812

ABSTRACT

B Methods: b A retrospective analysis of medical charts for adult patients without COVID-19 who have undergone an inpatient cardiac arrest from March 1, 2019 to December 1, 2019 are compared to cardiac arrest patients with and without COVID-19 from March 1, 2020 through December 1, 2020 at Rush University Medical Center. B Introduction: b Survival for patients infected with coronavirus disease 2019 (COVID-19) following in-hospital cardiac arrest is low with a 30-day survival rate at 0-3% SP 4,5,6,7,8 sp . B Results: b Thus far, 112 patients have been identified as experiencing cardiac arrest during the periods studied and 33 of these patients were found to have COVID-19 at the time of admission. [Extracted from the article] Copyright of Critical Care Medicine is the property of Lippincott Williams & Wilkins and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Cell Host Microbe ; 29(3): 489-502.e8, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1064930

ABSTRACT

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-ß levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-ß responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.


Subject(s)
COVID-19/immunology , COVID-19/virology , Interferon Type I/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Nonstructural Proteins/genetics , A549 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Base Sequence , COVID-19/blood , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Female , Gene Deletion , Genomics , HEK293 Cells , Humans , Infant , Interferon Type I/blood , Interferon-beta/blood , Interferon-beta/metabolism , Male , Middle Aged , Molecular Epidemiology , Reverse Genetics , Vero Cells , Viral Nonstructural Proteins/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL